A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

نویسندگان

  • LIN MU
  • JUNPING WANG
  • YANQIU WANG
  • XIU YE
چکیده

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces and with stabilization, it works on partitions of arbitrary polygon or polyhedron. In this article, the weak Galerkin method is applied to discretize the Ciarlet-Raviart mixed formulation for the biharmonic equation. In particular, an a priori error estimation is given for the corresponding finite element approximations. The error analysis essentially follows the framework of Babus̆ka, Osborn, and Pitkäranta [8] and uses specially designed mesh-dependent norms. The proof is technically tedious due to the discontinuous nature of the weak Galerkin finite element functions. Some computational results are presented to demonstrate the efficiency of the method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridized Weak Galerkin Finite Element Method for the Biharmonic Equation

This paper presents a hybridized formulation for the weak Galerkin finite element method for the biharmonic equation based on the discrete weak Hessian recently proposed by the authors. The hybridized weak Galerkin scheme is based on the use of a Lagrange multiplier defined on the element interfaces. The Lagrange multiplier is verified to provide a numerical approximation for certain derivative...

متن کامل

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

C IPG Method for Biharmonic Eigenvalue Problems

We investigate the C interior penalty Galerkin (C IPG) method for biharmonic eigenvalue problems with the boundary conditions of the clamped plate, the simply supported plate and the Cahn-Hilliard type. We prove the convergence of the method and present numerical results to illustrate its performance. We also compare the C IPG method with the Argyris C finite element method, the Ciarlet-Raviart...

متن کامل

A C-weak Galerkin Finite Element Method for the Biharmonic Equation

Abstract. A C0-weak Galerkin (WG) method is introduced and analyzed for solving the biharmonic equation in 2D and 3D. A weak Laplacian is defined for C0 functions in the new weak formulation. This WG finite element formulation is symmetric, positive definite and parameter free. Optimal order error estimates are established in both a discrete H2 norm and the L2 norm, for the weak Galerkin finite...

متن کامل

Effective implementation of the weak Galerkin finite element methods for the biharmonic equation

The weak Galerkin (WG) methods have been introduced in [11, 16] for solving the biharmonic equation. The purpose of this paper is to develop an algorithm to implement the WG methods effectively. This can be achieved by eliminating local unknowns to obtain a global system with significant reduction of size. In fact this reduced global system is equivalent to the Schur complements of the WG metho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014